Extreme Points and Rotundity in Musielak-Orlicz-Bochner Function Spaces Endowed with Orlicz Norm
نویسندگان
چکیده
منابع مشابه
Extreme Points and Rotundity in Musielak-Orlicz-Bochner Function Spaces Endowed with Orlicz Norm
and Applied Analysis 3 Put LM X { u ∈ XT : ρM λu < ∞ for some λ > 0 } . 1.5 Then the Musielak-Orlicz-Bochner function space ‖u‖ inf k>0 1 k [ 1 ρM ku ] 1.6 is Banach space. If X R, LM R is said to be Musielak-Orlicz function space. Set K u { k > 0 : 1 k ( 1 ρM ku ) ‖u‖ } . 1.7 In particular, the set K u can be nonempty. To show that, we give a proposition. Proposition 1.1. If limu→∞ M t, u /u ∞...
متن کاملNonsquareness in Musielak-Orlicz-Bochner Function Spaces
and Applied Analysis 3 Proposition 1.2. Function σ t is μ-measurable. Proof. Pick a dense set {ri}i 1 in 0,∞ and set Bk { t ∈ T : M ( t, 1 2 rk ) 1 2 M t, rk } , qk t rkχBk t k ∈ N . 1.7 It is easy to see that for all k ∈ N, σ t ≥ qk t μ-a.e on T . Hence, supk≥1qk t ≤ σ t . For μ-a.e t ∈ T , arbitrarily choose ε ∈ 0, σ t . Then, there exists rk ∈ σ t − ε, σ t such that M t, 1/2 rk 1/2 M t, rk ,...
متن کاملNonsquareness and Locally Uniform Nonsquareness in Orlicz-Bochner Function Spaces Endowed with Luxemburg Norm
متن کامل
Smooth points of the unit sphere in Musielak-Orlicz function spaces equipped with the Luxemburg norm
There is given a criterion for an arbitrary element from the unit sphere of Musielak-Orlicz function space equipped with the Luxemburg norm to be a point of smoothness. Next, as a corollary, a criterion of smoothness of these spaces is given.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Abstract and Applied Analysis
سال: 2010
ISSN: 1085-3375,1687-0409
DOI: 10.1155/2010/914183